

Taco Training TACO-Ways

Heat Loss:

IDT - ODT = DTD

Infiltration:

Infiltration Factors:

1 outside wall with openings:	.012
2 outside walls with openings:	.018
3 outside walls with openings or main entry:	.027

Infiltration: $L \times W \times H \times DTD \times Infiltration Factor$

Windows/Doors:

 $L \times W$ (area) \times DTD \times U-value U = 1 \div R R = 1 \div U

Walls:

Net area (subtract window/door area) \times DTD \times U-value

Ceilings/Floors: $L \times W \times DTD \times U$ -value

Universal Hydronics Formula:

 $GPM = BTUH \div (\Delta T \times 500)$

Boiler Ratings:

AGA Input: burner input rating DOE: Federal output rating – jacket, piping losses usable heat Net IBR: DOE – 15%, jacket, piping losses unusable, "pickup" allowance

Pipe Sizing Guidelines:

2-4 GPM = ³/₄" 4-9 GPM = 1" 8-14 GPM = 1¹/₄" 14-22 GPM = 1¹/₂"

Head Loss:

Easy Way (estimating): Measure length of the run Multiply by 1.5 (fittings, valves, etc) Multiply by .04 (4' head/100' of straight, properly sized pipe)

Right way (calculating)

Measure run, then count the fittings

Fitting	1/2″	3/4″	1″	1-1/4″	1-1/2″	2″
45 °	1.0				2.2	2.8
90 °	2.5				4.3	5.5
Ball Valve	1.9	2.2	4.3	7.0	6.6	14.0
Globe Vlv Open	17.0	22.0	27.0	36.0	43.0	55.0
Тее	5.0				9.0	12.0
Venturi Tee	Х	18.0	14.0	9.5	10.5	Х
Flow Check	Х	27.0	42.0	60.0	63.0	83.0

Add up Total Developed length

Find PSI/foot of pipe at correct flow:

Flow, GPM		1/4″			3/8″			1/2″			3/4″			1″			1-1/4	"	1-1/2″		"
	к	L	м	к	L	м	к	L	м	к	L	м	к	L	м	к	L	м	к	L	м
1	.138	.118	N/A	.036	.023	.021	.010	.008	.007	.002	.001	.001	.000	.000	.000	.000	.000	.000	.000	.000	.000
2			N/A	.130	.084	.075	.035	.030	.024	.006	.005	.004	.002	.001	.003	.001	.000	.000	.000	.000	.000
3			N/A	.275	.177	.159	.074	.062	.051	.014	.011	.009	.003	.003	.001	.001	.001	.001	.000	.000	.000
4			N/A				.125	.106	.086	.023	.018	.015	.006	.005	.004	.002	.002	.002	.001	.001	.001

PSI/foot×Developed length = PSI pressure drop PSI pressure drop×2.31 = head loss

Pressure Loss for PEX: Find PD per foot at corre

Find PD per foot at correct flow rate, pipe size. Multiply by total length

Flow, GPM	M	r PEX Barr pei	ier PEX Pr Foot of P	essure Dr ipe	ор	Flow, GPM	М	r PEX Barr pe	ier PEX Pı r Foot of P	essure Dr Pipe	ор
GPM	3/8″	1/2″	5/8″	3/4″	1″	GPIM	3/8″	1/2″	5/8″	3/4″	1″
8.0	11.31	2.48	0.93	0.44	0.12	3.4	2.04	0.45	0.17	0.08	0.02
7.8	10.61	2.32	0.87	0.41	0.12	3.2	1.81	0.40	0.15	0.07	0.02
7.5	9.94	2.18	0.81	0.39	0.11	3.0	1.59	0.35	0.13	0.06	0.02
7.3	9.29	2.03	0.76	0.36	0.10	2.8	1.39	0.30	0.11	0.05	0.02
7.0	8.66	1.90	0.71	0.34	0.09	2.6	1.19	0.26	0.10	0.05	0.01
6.8	8.05	1.76	0.66	0.31	0.09	2.4	1.02	0.22	0.08	0.04	0.01
6.5	7.46	1.63	0.61	0.29	0.08	2.2	0.86	0.19	0.07	0.03	0.01
6.3	6.90	1.51	0.57	0.27	0.08	2.0	0.71	0.15	0.06	0.03	0.01
6.0	6.36	1.39	0.52	0.25	0.07	1.8	0.57	0.13	0.05	0.02	0.01
5.8	5.84	1.28	0.48	0.23	0.06	1.6	0.45	0.10	0.04	0.02	
5.5	5.34	1.17	0.44	0.21	0.06	1.4	0.35	0.08	0.03	0.01	
5.3	4.87	1.07	0.40	0.19	0.05	1.2	0.25	0.06	0.02	0.01	
5.0	4.42	0.97	0.36	0.17	0.05	1.0	0.18	0.04	0.01	0.01	
4.8	3.99	0.87	0.33	0.15	0.04	0.8	0.11	0.02	0.01		
4.5	3.58	0.78	0.29	0.14	0.04	0.6	0.06	0.01	0.01		
4.3	3.19	0.70	0.26	0.12	0.03	0.4	0.03	0.01			
4.0	2.83	0.62	0.23	0.11	0.03	0.2	0.01				
3.8	2.55	0.56	0.21	0.10	0.03	0.0					
3.6	2.29	0.50	0.19	0.09	0.03						

Calculating Head Loss using Cv Rating: $(Flow \div Cv)^2 \times 2.31 = Head Loss$

Sizing Buffer Tanks:

Minimum BTUH Firing Rate – BTUH load of smallest zone = BTUH Surplus BTUH Surplus×Minimum Desire Run Time (10 minutes) = Cycle Factor Cycle Factor \div (Delivery $\Delta T \times 500$) = Buffer tank size in gallons

Sizing Expansion Tanks:

V=V _{system} X	Dcold 1	Prelief valve +9.7
V — V system 🔨	D hot	Prelief valve +9.7 Prelief valve -Pcharge - 5

Water D	Density (lbs/ft3)		13″	16″	18″	20″	22″	23″	26″	30″	32″	36″	38″	45″
60)°F 62.34													
100	0°F 62.00	3 Tubes				1.72		2.00	2.33	3.00		3.50	3.50	
110	0°F 61.84													
120	0°F 61.73	4 Tubes				2.25		2.50	2.75		3.50	4.25		
130		4 Tubes				2.25		2.50	2.75		5.50	1.25		
140														
150		5 Tubes				2.67		3.00	3.50	4.33	4.33	5.00	6.00	
160														
170														
180		6 Tubes				3.00		3.50	4.00		5.00			
190	0°F 60.39													
Piping Water Content:		7 Tubes	2.60	3.50		4.20			4.75					
Copper –	Gallons per foot:													
1/2″	0.016													
3/4″	0.027	1 Column				1.50		1.67	2.00		2.50		3.00	
1″	0.046	-												
1-1/4″	0.068	2 Columns				2.00		2.33	2.67		3.33		4.00	5.00
1-1/2″	0.096					2.00		2.55	2.07		5.55		7.00	5.00
PEX – G	allons per 100':	3 Columns			2.25		3.00		3.75		4.50		5.00	6.00
3/8″	0.497													
1/2″	0.917	4 Columns			3.00		4.00		5.00		6.50		8.00	10.0
5/8″	1.392	4 Columns			3.00		4.00		5.00		0.00		0.00	10.0
3/4″	1.832													
1″	3.067	5 Columns	3.00	3.75	4.50	5.00		6.30	7.00		8.50		10.0	
	5.007													

Estimating Fuel Consumption:

 $EFU = Heating load \times 24 \times Degree Days \times Correction Factor$ AFUE(as decimal) × BTUH content of fuel × DTD

Find Degree Days at <u>www.degreedays.net</u>

Correction Factors:

Degree days	Factor		1
2,500	0.720		
3,000	0.700		
3,500	0.680		
3,750	0.670		
4,000	0.660		
4,250	0.645		

Degree days	Factor
4,500	0.630
4,750	0.620
5,000	0.610
5,250	0.605
5,500	0.600
5,750	0.605

Degree days	Factor
6,000	0.610
6,250	0.615
6,500	0.620
6,750	0.625
7,000	0.630
7,250	0.635

Degree days	Factor
7,500	0.640
7,750	0.645
8,000	0.650
8,500	0.660

Estimating Electrical Consumption:

Watts ÷ 1000 = Kilowatts (kW) kW × "on" hours = Kilowatt hours (kWh) kW ×cost/kWh = Estimated operating cost

Indirect Hot Water Tanks:

Capacity×.75 = Usable Capacity

Recovery/minute = Boiler BTUH output ÷ 45,000 (or 8.33×60×90)

Usable Capacity + (Recovery/minute×60) = First Hour Rating

First Hour Rating \div 60 = First Hour GPM available

 $(T_{mix} - T_{inc}) \div (T_{stored} - T_{inc}) = Storage Factor$

Usable Capacity ÷ Storage Factor = Tempered Capacity

